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Abstract

We establish existence results of the following three-point boundary value
problems:

{u"(t) + f(t, ult), W) =0,t e (0,1),
(BC)u(0) = 0, u(1) = du(n),

where 0 <m <1, and 8§ >0 with & <1 or with 8 <1. The approach applied in

this paper is upper and lower solution method associated with basic degree theory
or Schauder’s fixed point theorem. Under the Nagumo’s condition posed on the
source term, we deal with diverse solutions for this boundary value problem with

the function f which is continuous, Carathéodory on its domain, respectively.
1. Introduction

In this paper, we consider three-point boundary value problem
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w'(t)+ f@, ult), v'(t)) =0,t (0, 1), (1)
u(0) = 0, u(l) = du(n), @
where 0 <1 <1, and 8 > 0 with 8n <1 or with § < 1.

There are plenty of works having appeared on three-point boundary
value problems, when f is independent of u', see, for example, [4, 6, 7].
Note that in this article, we are particularly interested in the source term
f, which depends on u'. Recently, many authors pay attention to such

problems and get existence results of multiple solutions, see [3, 5].

We will discuss the existence of solutions of some general types on
three-point boundary value problems by using upper and lower solution
method associated with basic degree theory or Schauder’s fixed point
theorem. This paper is organized as follows. In Section 2, we give some
preliminaries. In Section 3, for the case f is continuous, we use the

classical space C![0, 1] of continuous functions on [0, 1] with C!-norm,

and apply Schauder’s fixed point theorem on this function space to show
the existence of classical solutions in Theorem 1. In Section 4, focusing on
the source term f, which is a Carathéodory function, we consider the

Sobolev space W21(0, 1) defined by
w210, 1) == {u e C'[0, 1]|u" € I}0, 1)}.

Two kinds of upper and lower solutions are introduced there, and by

applying Schauder’s fixed point theorem and degree theory, we get the

existence of W?!-solution in Theorems 2 and 3, respectively. Finally,

some examples are given in the last section.

2. Preliminaries

Define G : [0, 1]x [0, 1] — (-, ) by

G, s) =

1 o
1—6nt(1_8)_U(t’ s)—l_

< <
5 Vi(t,s),0<t s<1, 3)

where 8 and n are given as (2), and
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t— <t th-s), s<m,
o, s)={ S SShyog 2 { Mm-s), s<n
0 t<s 0 <

, n<s.

By direct computations, we get the following lemma.
Lemma 1. (i) The function G : [0, 1]x [0, 1] = (-, ) defined by (3),

is the Green function corresponding for the problem

{u"(t) =0,
u(0) = 0, u(1) = du(n).

(i) The function G :[0,1]x][0,1] - (-, ©) defined by (3), is
continuous.

3. Existence of Classical Solutions

In this section, we deal with the classical case, that is, our source

term f is continuous, and assume 0 < 81 <1 on our boundary condition

(2). The notion of upper and lower solutions are given as follows:

Definition 1. A function o € C2(0, 1) C[0, 1] is a lower solution of
problem (1), (2), if it satisfies:

(i) a(0) <0, a(l) < da(n), and

@) for all ¢ € (0, 1), a"(t) + f(¢, alt), a'(¢)) > 0.

Definition 2. A function B € C2(0, 1) N C[0, 1] is an upper solution of
problem (1), (2), if it satisfies:

() B(0) = 0, B(1) = 3B(n), and

(1) for all ¢ € (0, 1), B"(¢) + f(t, B(z), B'(¢)) < O.

Definition 3. Let o be a lower solution and B be an upper solution
for problem (1), (2), satisfying o < B on [0, 1]. We say that a continuous
function f satisfies Nagumo’s condition with respective to a and B, if

there exists a function i € C([0, »); (0, + «)) such that

(&, w, v)| < R(p),
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for all (¢, u, v) € [0, 1]x [a(t), B(¢)] x R, and

The proofs for the existence theorems for solutions of boundary value
problems depend on finding a priori bounds for the solution and its
derivative. Hence, we need the following well-known result.

Lemma 2 [2]. Assume that f is a continuous function satisfying
Nagumo’s condition on [0, 1] with respect to o and B. Then for any

solution u(t) e C2[0, 1] of (1) with al(t) < u(t) < P(t) on [0, 1], there exists
an L > 0 depending only on o, B, h such that
') < L on [0, 1].

It follows from Lemma 2 that we choose a number N large enough

and two functions f, f : [0, 1]]x Rx R — R via

f(t, u, — N), if v < =N,
f(t, u,v)=1{f¢t uv), if —-N<v<N,
f(t, u, N), if v> N,

and
3 f(t, alt), v) + % if u < alt),
Fit, u,v) = 17t u, v), if aft) < u < B0),
ﬂawx@+ﬁ%ﬁm, if u > B(t).

Note that }7 is a continuous function on [0, 1]x R x R, satisfying, for

some M > 0,

I7(t, w, v) < M, for (4, u, v) e [0, 1] x B x R. (4)

Before proving our main results, we first focus on such a modified
problem given as follows:

W)+ i, w ) = 0,t e (0,1), ®)

with boundary condition (2).
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Proposition 1. Let o(t) and B(t) be the respective lower and upper
solution of problem (1), (2) with a(t) < B(t) on [0,1], and let f be
continuous on E and satisfy Nagumo’s condition with respect to o and B

on [0, 1], where
E:={t uv)el0, 1]xRxR|alt) < u < B@)}.

Moreover, we assume that on domain E, for each fixed (t, u), f(t, u, v) is

nondecreasing in v. If u € C2(0, 1) C[0, 1] is a solution of the modified
problem (5), (2), then af(t) < u(t) < B(t), for any t € [0, 1].

Proof. Let us assume on the contrary that, for some t, € [0, 1],

i (u(t) - o(t)) = ulty) - alt) < 0.

Case (i). If t5 € (0, 1), by the definition of lower solution a(t) and
f(t, u), we obtain

0<u'(ty)—a'(ty)

IA

Flto, ulty), w'(to)) + flto. alty), o«'(to))

At alt), (1)~ e S + o, alty). )

__oftg) - ultp) <0
1 +a(to )| +[ulto))

It leads to a contradiction.
Case (ii). If ¢y = 0, by the definition of lower solution, a(0) < 0, we
then have
0 = u(0) < u(0) - a(0) < 0,
and get a contradiction.
Case (iii). If t5 =1, let w(t) == u(t) - a(t). Note that w(1) < 0 and
w(0) > 0. Hence, there exists ¢ € [0, 1) such that w(c) = 0 and w(t) < 0,
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for all ¢ € (o, 1]. We separate it into two subcases. If ¢ € (n, 1), it follows
from w(n) < 0, that there exists ¢ e (0, o) such that w(¢ ) = min{w(t)]
t € [0, c]}. Hence, we have w'(t;) = 0 and w"(¢; ) > 0. Therefore,

0<w'(ty)=u'(t;)-a'(ty)

-l o), o)~ aln)

<0,
which is a contradiction. If ¢ € (0, n), we split the rest into two parts:
(1°) w'(t)< 0, for all ¢ e [o,1]. In this case, for all ¢ e (o, 1], it

follows from w(t) < 0, and the nondecreasing property of f(¢, u, v) on E,

that

w'l) < ~f(t, a(t). a'1) - - +°|‘g()t)‘| -L:(Iit)(t)l _a(t) < 0.

Hence, w(t) is concave on [o, 1], which implies

wl)  w@)
n-oc 1-o

However, w(1) > dw(n) > %w(n), which is impossible.

(2°) there exists ¢y € (5,1) such that w(ty) <0, w'(ty) =0, and

w"(ty) > 0. In this case, we have

0 < wlty) = Ay, alte), a(ty)) - ) lle) ey <,

ot )| + [ulty))
which is a contradiction.

Similarly, we can show that u(t) < B(t), for any ¢ € [0, 1], hence, we

complete this proof. O

Theorem 1. Let o(t) and B(t) be the respective lower and upper
solution of problem (1), (2) with a(t) <B(t) on [0,1], and let f be
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continuous on E and satisfy Nagumo’s condition with respect to o. and

on [0, 1], where
E ={t u v)e[0,1]xRxR|a) < u < Bt)}.

Moreover, we assume that on domain E, for each fixed (t, u), f(¢, u, v) is
nondecreasing in v. Then, the problem (1), (2) has at least one solution

u e C?(0,1)N C[0, 1] such that, for all ¢ < [0, 1],
alt) < ul(t) < B(2).

Proof. Consider the modified problem (5), (2). Define T : C1[0, 1]
- C'o, 1] by

1

(Tw) (¢) = j G(t, $)F (s, u(s), u(s))ds, ©)

0

for u € C1[0, 1], where G(¢, s) is defined as (3).
Let
D = {u e C'o,1]| |1 < min(my M, mo M)},

where
1

my = tgl[g,)i] O|G(t, s)|ds,

1 oG
mo = trﬁg’)i] I0| E(t’ s)|ds,

and M i1s defined as in (4). It is clear that D is a closed, bounded, and
convex set in C! [0, 1] and one can show that T : D — D is a completely

continuous mapping by Arzela-Ascoli theorem. By applying Schauder’s
fixed point theorem, we obtain that 7 has a fixed point © in D, which is a
solution of problem (5), (2). From Proposition 1, this fixed point u of T is

indeed a solution of equation

W) + F (¢, ult), w(@) = 0,
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with boundary condition (2). Next, we claim that [w'(¢)] < N on [0, 1]. It
follows from Mean Value Theorem, and af(t) < u(t) < B(t) on [0, 1] that
there exists xy € (0, 1) such that

(9| = max{[a(0) - B, |au(t) - BO)]} = 2 < N.

If the claim does not hold, then there exists [x3, x; ] < [0, 1], such that

one of the following case hold:
(1) u'(x3)=-N,u'(x;)=-A, and - N < u'(t) < =\, for t € (x3, x1),
(1) w'(xg) = -A, u'(x;) = -N, and - N < u'(t) < -, for ¢ € (x3, 1),
(1) u'(x3) = N, u'(x;) = A, and A < u'(t) < N, for ¢ € (x3, x1),
(iv) u'(xg) =X, u'(x;) = N,and A < u'(t) < N, for ¢ € (x3, x7 ).

Let us consider Case (i), other cases are discussed similarly. On [x3, x; ],

we infer that

w(e)] = (& ue), w@) = £ ule), w@)] < hlw'@)

on [xg, x; ]. Thus,

u(xg) —u(xy) = J:_u'(t)dt = I:%dt

N s .
[, ww > msnpo - mineo:

a contradiction. Hence, this fixed point of 7T is indeed a solution of

problem (1), (2), and the proof is completed. O
4. Carathéodory Case

In this section, we first introduce the definition of Carathéodory
function, and the notion of w1 -upper (lower) solution. Then, we shall

discuss the existence of W21 -solution by assuming the existence of upper

and lower solutions under Carathéodory case.
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Definition 4. A function f(t, u, v) defined on E c [a, b]x Rx R is
called a Carathéodory function on E, if
(i) for almost every ¢ € [a, b], f(t, -,-) is continuous on its domain,

(1) for any u, v € R, the function f(-, u, v) is measurable on its

domain,

(iii) for any r > 0, there exists p, e L'(a, b) such that for any u, v e
[-r, r], and for almost every t e [a, b] with (¢, u,v) € E, we have
f u, v)| < p,(2).

Now, we impose 0 < & <1 on the boundary condition (2) and start
concerning about Carathéodory case, that is, the Carathéodory source

term f. We shall discuss the existence of W21 solution by assuming the

existence of upper and lower solutions.

4.1. Existence of W?>!.solutions. In this subsection, we i1mpose an

additional assumption on the increasing property of f and discuss the

existence of W21 solution. We first introduce the definitions of W21!.

upper and lower solutions as below.

Definition 5. A function a € C[0, 1] is called a W% -lower solution

of problem (1), (2), if it satisfies

(1) a(0) < 0, a(1) < San), and

@ii) for any ty € (0, 1), either D a(ty) < D,a(ty), or there exists an

open interval I, < (0, 1) containing ¢, such that a € W*1(I,), and for

almost every ¢ € I, we have
a'(t) + f(¢, al(t), a'(t)) = 0.

Definition 6. A function B e C[0, 1] is called a W -upper solution
of problem (1), (2), if it satisfies

(i) B(0) = 0, B(1) = 3B(n), and
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(ii) for any ¢y € (0, 1), either D_B(¢y) > D*B(¢y), or there exists an

open interval I, < (0, 1) containing #, such that p e W21(I,), and for

almost every ¢ € I, we have
B"(t) + f(z, B(2), B'(t)) < O.

For this pair of W2’1-upper and lower solutions, we can define the
Nagumo’s condition for Carathéodory function similar as Definition 3,

and conclude.

Lemma 3. Assume that Carathéodory [ is a Carathéodory function

satisfying Nagumo’s condition on [0, 1] with respect to o. and B. Then for
any solution u e W*(0, 1) of (1) with a(t) < u(t) < B(t) on [0, 1], there
exists an L > 0 depending only on o, B, h such that

') < L on [0, 1].

Proof. All arguments are as same as Bernfeld and
Lakshmikantham’s proof, see [2], except one point that we use the more
general version of change of variables in integral, which is mentioned in
[1, p.165]. O

Proposition 2. Let a(t) and P(t) be the respective W' -lower and
upper solution of problem (1), (2) with o(t) < B(t) on [0, 1], and let f be a

Carathéodory function on E, and satisfy Nagumo’s condition with respect
to a and B on [0, 1], where

E ={tuv)el0,1]xRxR|al) < u < B)}.

Moreover, we assume that on domain E, for each fixed (t, u), f(¢, u, v) is

nondecreasing in v. If u < W2’1(0, 1) is a solution of the modified problem

(5), (2), then alt) < u(t) < B(t), forany t [0, 1].
Proof. Suppose there exists ¢ € [0, 1] such that

i (ult) - ot)) = ulto) - alto) < 0.
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Case (i). If ¢ty € (0, 1), we have u'(tg) — D alty) < u'(ty) - D,alty),
which implies D a(ty) > D,a(ty). Hence, by Definition 5 and the

continuity of u — o at t;, there exist an open interval Iy < (0, 1) with

to € Iy, a € W>(I,), and a neighborhood G of #, contained in I, such

that for almost every ¢ € G,
u(t) - alt) < 0,
and
a’(t) + f(t, alt), a'(t) = 0.

Furthermore, it follows from u'(¢) — a/(¢) > 0, for ¢ > ¢y, t € G that

- ft, lt), w(O) + g, i )] < N,
7t ult), w'(0)) = oo
f(t (l(t) N)+W, if u(t)>N

Since, the nondecreasing assumption on f, one can conclude that for
t > to,

()~ o) = | : (u(s) — oa’(s)) ds

< I: s, uls), w(s) + £(s, als), a'(s))ds

< 0.

This implies that the minimum of w—-o can not occur at ¢y, a

contradiction.

Case (ii). If ty =0, by the definition of w2 lower solution
a(0) < 0, we then have

0 = u(0) < u(0) - a(0) < 0,

and get a contradiction.
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Case (iii). If ty =1, it follows from the conclusion of Case (i), and

0 <38 <1 that
u(l) - afl) 2 8(u(m) - am)) > 3(u(l) - a(l)) = u(1) - a(l),
which is impossible.

Consequently, we obtain a(t) < u(t) on [0,1]. By the similar

arguments as above, we also have
u(t) < B(t) on [0, 1].
O
Theorem 2. Let a(t) and P(t) be the respective W' -lower and upper

solution of problem (1), (2) with o(t) < B(t) on [0,1], and let f be a

Carathéodory function on E and satisfy Nagumo’s condition with respect
to a and P on [0, 1], where

E ={t uv)el0,1]xRxR|a(t) < u < B@)}.
Moreover, we assume that on domain E, for each fixed (t, u), f(¢, u, v) is
nondecreasing in v. Then, the problem (1), (2), has at least one solution
u € W21 such that, for all t < [0, 1],
alt) < ul(t) < B(2).

Proof. As in the proof of Theorem 1, we consider the modified
problem (5), (2) with respect to the given a(¢) and B(t). Consider the

Banach space C'[0, 1] with usual C' -norm, and the operator 7' : C'[0, 1]
— C0, 1] by (6). Since f is a Carathéodory function, for r >> 0, there
exists a function h, e I}(0, 1) such that for any u e [-r, r], for almost
every t € [0, 1] with (¢, u, v) € E, we have

6 o) < )
Define

K = {u e C'[0,1]| ] < min(M;, My)},
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where

1
My = max I [0 9/ [~,(s) +1]ds < o,

and

_ L oG
My = mas, j G 9y () + 1)ds < on

It 1s clear that K is a closed, bounded, and convex set in ct [0, 1] and one

can show that T : K — K 1is a completely continuous mapping by
Arzela-Ascoli theorem, and Lebesgue dominated convergence theorem. By
applying Schauder’s fixed point theorem, we obtain that 7T has a fixed
point in K, which is a solution of problem (5), (2). From Proposition 2 and
similar arguments in Theorem 1, this fixed point of 7' is also a solution of
problem (1), (2). Hence, we complete the proof. O

4.2. Non-tangency solution. In this subsection, we afford another

stronger W21 lower and upper solutions to get a strict inequality of the

solution between them.

Definition 7. A function o e C[0, 1] is a strict W2 -lower solution of
problem (1), (2), if it is not a solution of problem (1), (2), a(0) < 0, a(l) <
da(n), and for any ¢, € (0, 1), one of the following is satisfied:

(l) Di(l(to) < D+O((t0 ),

(i) there exist an interval I, < [0, 1] and ¢ > 0 such that ¢y € int
(Iy),a e W?(I,), and for almost every ¢ely, for all
uelalt),alt)+e<], u'(t) e R, we have

a’'(t) + f(¢, ult), w'(t) = 0.
Definition 8. A function B € C[0, 1] is a strict W -upper solution of

problem (1), (2), if it is not a solution of problem (1), (2), p(0) > 0, B(1) >
3B(n), and for any ¢, € (0, 1), one of the following is satisfied:

@ D_B(to) > D'Blto),
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(ii) there exist an interval I, < [0, 1] and ¢ > 0 such that ¢y € int
(Iy), e W?¥(I,), and for almost every tel,, for all
u e [B) -« Bt)], u'() e R, we have
B'(t) + f(2, ut), W) < O.
Remark. Every strict W21 lower (upper) solution of problem (1), (2)
isa W2!.lower (upper) solution.

We also consider the three-point boundary value problem (1), (2),
which can be written in the form

u(t) = (Mu)(t) = J.:G(t, s)f (s, uls), u'(t)ds, )

where G(¢, s) is defined by (3).

Now, we are going to show that the solution curve of problem (1), (2)

can not be tangent to upper or lower solutions from below or above.

Proposition 3. Let o(t) and B(t) be the respective strict W' -lower
and upper solution of problem (1), (2) with o(t) < B(t) on [0,1], and let f

be a Carathéodory function on E and satisfy Nagumo’s condition with

respect to o. and B on [0, 1], where

E ={{t u,v)e[0,1]xRxR|aft) <u < Bt).
If u e W2Y(0, 1) is a solution of problem (1), (2) with a. < u < B on [0, 1],
then a(t) < u(t) < B(t), forany t € [0, 1].

Proof. As a 1is not a solution, u is not identical to a. Assume the

conclusion does not hold, then

to = inf{t € [0, 1]| u(t) = a(t)}

exists. Since u — a has minimum at ¢, we have D a(ty) > D,a(ty) and

u(ty) —alty) = 0.
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Case (i). If ¢ty € (0,1), according to the Definition 7, there exist
Iy, ¢g > 0, and t; € Iy with ¢; <ty such that, for every t e (¢, ty), u(t)

< olt)+eg, u'(ty)—a'(t;) < 0, and for a.e. t € (¢, ty)

a'(t) + f(¢, u), u'(t) > 0.

Hence, we have the contradiction since
to
0< (@ —-a)(ty) - —a)(t)=— I L ), w(e) + a'(©)]de < 0.
1

Case (ii). If ¢ty = 0, by the definition of strict W2 Jower solution

that a(0) < 0, we then have
0 = u(0) - a(0) < 0,
and get a contradiction.

Case (iii). If ¢; =1, repeat the same arguments in Case (iii) of

Proposition 2.

Therefore, we obtain a(t) < u(t) on [0, 1]. The inequality u(t) < B(¢)

on [0, 1] can be proved by the similar arguments as above. O

Theorem 3. Let a(t) and B(t) be the respective strict W' -lower and
upper solution of problem (1), (2) with o(t) < B(t) on [0, 1], and let f be a

Carathéodory function on E and satisfy Nagumo’s condition with respect
to a and B on [0, 1], where

E ={t uv)el0,1]xRxR|aft) < u < B)}.

If, in addition, we assume that on domain E, for each fixed (t, u),

f(¢, u, v) is nondecreasing in v. Then,
deg(I - M, Q) =1,
where M is defined by (7), and

Q= {ue Co,1]|alt) < u(t) < B(t), - N -1 < u/(t) < N +1, for any t € [0, 1]}.
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As a result, problem (1), (2), has at least one solution u < W2’1(0, 1) such
that, for any t € [0, 1]
alt) < ult) < B(2).

Proof. Consider the modified problem (5), (2), and the operator
T : C'o, 1] - Co, 1] is defined by

1 =
)@ - | (Gl 9F (s, uls). w(s)ds.

where G(t, s) is defined by (3). It is clear that ImT is bounded, hence, for
any R > 0 large enough, ImT is contained in the ball Br(0) with center

at the origin and radius R.

For any A € [0, 1], x € Br(0), let
HM, x) = Mx —Tx)+ (1 - ).

One can demonstrate that H(), x) is a homotopy and H(A, x) # 0, for all
x € 0Br(0) and 0 <A <1. From the homotopy invariance of degree

theory, we have
deg(I — T, Bg(0)) = deg(I, Bg(0)) = 1.

It follows from Remark and Proposition 2 that every solution u of problem
(5), (2) satisfies a(t) < u(t) < B(t) on [0, 1], moreover, by Proposition 3

and similar demonstration as in the proof of Theorem 1, we conclude that
a(t) < u(t) < B() on [0,1] and [u'(t)] < N. This proves that such a

solution is in Q.
As M and T coincide on Q, we obtain
deg(I - M, Q) =deg(I - T, Q).
By the excision property of degree theory, we get
deg(I - T, Q) = deg(I - T, Bg(0)) = 1.

Hence, we complete the proof. O
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5. Examples

In this section, we afford two examples as applications of our results
in Theorems 1 and 2.

Example 1. Consider the second order three-point BVP
u'(¢) + exp(—u(t)) — u@)u't) +t -1=10,t € (0, 1), (8)
u(0) = 0, u(1) = cu(1/2), (9)
where 0 < ¢ <1. We observe that a(t) =0 and B(¢) =t are lower and
upper solutions of problem (8), (9), respectively. Clearly, f(t, u, v):=
exp(-u) — ulv| + ¢ =1 is continuous on [0, 1]x R x R. Also, f satisfies the
Nagumo’s condition with respect to o and B on [0,1], where

h(s) := 2 +s on [0, ©). All assumptions in Theorem 1 are satisfied, and

hence, we obtain a classical solution u such that 0 < u(t) < ¢ on [0, 1].
Example 2. Consider the second order differential equation
w'(t) — sinu(t) — g(t) + |u’(t)|a_1u’(t) cosu(t) =0,t € (0, 1), (10)

equipped with (9), where 0 < ¢ <1,1 < a < 2, and

1, if te[0,1]NQ,
g@={. :
sint, if t e[0,1]NQ°.

We observe that a(f)=—t and P(t)=0 are W?!-lower and upper

solutions of problem (10), (9), respectively. Clearly, f(¢, u, v) := —sinu +

2(t) + o|* Mv cos u is a Carathéodory function on E, where
E={tuv)el0,1]xRxR|-t <u <0}

Also, f satisfies the Nagumo’s condition with respect to o and B on [0, 1],

and f is increasing with respective to v for ¢ € [0, 1] and u € [-1, 0]. All

assumptions in Theorem 2 are satisfied. Hence, we get a W2 solution u
such that —¢ < u(t) < 0 on [0, 1].
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